RELATION DES CARACTERISTIQUES GEOLOGIQUES ET MECANIQUES DES SOLS LATERITIQUES NICKELIFERES D'AMBATOVY

RELATIONSHIP BETWEEN THE GEOLOGICAL AND MECHANICAL CHARACTERISTICS OF AMBATOVY LATERITIC AND NICKEL SOIL

Fidiniavo RAVOKATRA¹, Voahanginirina J. RAMASIARINORO², Lala ANDRIANAIVO³, N.ANDRIAMAMONJISOA

¹ Université d'Antananarivo, Ecole Supérieure Polytechnique, Laboratoire de Géotechnique, Madagascar, fidiniavo@yahoo.fr ² Université d'Antananarivo, Faculté des Sciences, Département des Sciences de la Terre, Laboratoire de Géotechnique, BP 906 Antananarivo 101 Madagascar,

ramasiarinoro@yahoo.fr

³ Université d'Antananarivo, Ecole Supérieure Polytechnique, Laboratoire de Géotechnologie, BP 1500 Antananarivo 101 Madagascar, andrianaivo@univantananarivo.mg

RÉSUMÉ –La méthode statistique d'Analyse en Composante Principale des données géochimiques et mécaniques des sols latéritiques nickelifères d'Ambatovy à Madagascar permet de décrire la relation entre la teneur en oxydes majeurs et les paramètres mécaniques de compressibilité et cohésion apparente de ces sols.

ABSTRACT – The principal component analysis of geochimical and mechanical data of Ambatovy nickel lateritic soil in Madagascar allows us to describe the relationship between the major oxide content and compressibility and apparent cohesion of these soils

1. Introduction

Le stockage de remblais des sols latéritiques, issue de l'exploitation de nickel à Ambatovy dans la région centrale de Madagascar, concerne l'analyse de stabilité de leur pente. Ces remblais sont dans la classe des sols fins dont la teneur en éléments des oxydes majeurs pourrait jouer un rôle prépondérant dans ladite stabilité.

Cet article propose d'analyser la relation entre la teneur en éléments des oxydes majeurs et les paramètres mécaniques de compressibilité et cohésion apparente de ces remblais.

Les données à valoriser et à capitaliser sont les résultats des travaux de recherche antérieurs sur l'évolution minéralogique, la distribution et le comportement géochimique de certains éléments au sein du profil latéritique nickelifère d'Ambatovy (Mandimbiharison A.J, 2012) ; et les reconnaissances géotechniques de site de stockage de sols latéritiques nickelifères à basse teneur d'Ambatovy (Boissé, 2015).

La méthode d'Analyse en Composante Principale est l'outil statistique choisi car il est bien adapté au grand nombre des données et leur structure sous forme de tableau avec des observations en ligne et des variables quantitatives en colonne.

1.1. Matériels et méthodes

Les données géologiques sont issues des travaux de thèse de doctorat sur l'évolution minéralogique, la distribution et le comportement géochimique de certains éléments au sein du profil latéritique nickelifère d'Ambatovy (Mandimbiharison A.J, 2012). Un échantillon par horizon d'altération a été analysé par spectrométrie pour analyse chimique.

Pour les données géotechniques, tous les essais sont réalisés selon les normes françaises. La classification des sols est selon le Guide des Terrassements Routiers et la réalisation des remblais et des couches de forme (NF P 11 300).

Les techniques d'échantillonnage sont définies suivant les essais :

- Prélèvement des échantillons remaniés pour les Essais d'identification ou de nature : Granulométrie par tamisage (NF P 94 -056), Limites d'Atterberg (NF P 94 - 051), et Teneur en eau pondérale des sols (NF P 94 - 050) ;
- Prélèvement des échantillons intacts par sondages carottés pour les essais d'état : Essai Triaxial non drainé et non consolidé (NF P 94 – 074), Essai de cisaillement à la boite (NF P 94 -071), et Essai de compression à l'oedomètre (NF P 94 – 090).
- Pour l'Essai de scissomètre sur chantier (NF P 94 112), les échantillons sont en place à l'état nature.

Les coordonnées, des points de prélèvement des échantillons, constituent la clé primaire de mise en relation de base des données géologiques et mécaniques de cette étude.

L'analyse statistique descriptive par la méthode d'Analyse en Composante Principale a été choisie car le nombre de variables quantitatives à analyser est important. L'Analyse en Composante Principale se porte sur la ressemblance de deux observations du point de vue de l'ensemble des variables. Elle s'intéresse également à la manière dont les variables sont corrélées positivement ou négativement ou indépendantes entre elles.

2. Résultats

Trois (3) catégories de résultats sont obtenues par des essais et analyses réalisés :

2.1. Résultats des essais mécaniques des sols

La première colonne des tableaux ci-après résume la classification des échantillons de sols selon le Guide des Terrassements Routiers et la réalisation des remblais et des couches des formes (NF P 11 300).

Les résultats des essais mécaniques au laboratoire sont regroupés en trois (3) types de paramètres : de nature (Voir Tableau1), d'état (Voir Tableau 2) et de comportement (Voir Tableau 3).

Classification GTR des échantillons		Passant à 2mm (%)	Passant à 80µm (%)	W%	WL (%)	WP (%)	IP (%)	lc (%)
A ₂ (Sables fins argileux)								
	A ₂ h	90	67,9	32,5	54,5	31,4	23,1	0,95
	A ₂ s	98	61,2	26,2	53,1	32,9		1,33
A ₃ (Argiles)							27,7	
	A₃h	93	78,4	42,9	66,2	38,6	32,8	0,84
<u>م</u>	∖₃th	95	80,2	47,6	69,6	36,8	36,5	0,67
A ₄ (Argiles très plastiques)		97	89,3	56,5	81,6	45,1		0,69

Tableau 1. Paramètres de nature

Classification GTR des échantillons	γ (kN/m3)	γ _d (kN/m3)	γ _s (kN/m3)	Sr (%)
A ₂ (Sables fins argileux)				
A ₂ h	18,5	13,7	32,3	85,7
A ₂ s	15,2	11,8	31,6	55
A ₃ (Argiles)				
A ₃ h	18,3	13	33,5	88,5
A ₃ th	16,8	12,1	32,2	76,3
A₄ (Argiles très plastiques)	16,5	9,6	31,8	99,7

Tableau 2. Paramètres d'état

Classification GTR des	Oedomètre			Triaxial UU		Cisaillem		
échantillons	σ'c (kPa)	Сс	Cg	C _{uu} (kPa) triaxial	φ _{uu} (°) triaxial	C _{uu} (kPa) cisaillement	φ _{uu} (°) cisaillement	eo
A ₂ (Sables fins argileux)								
A ₂ h	74	0,260	0,04	62	9,5	18	15	1,661
A ₂ s	76,8	0,340	0,02	4	1	18,3	11	1,444
A ₃ (Argiles)								
A ₃ h	71,4	0,271	0,014	18,2	3,4	22,5	13	1,652
A ₃ th	70	0,266	0,015	25	8	20,5	7	2,08
A₄ (Argiles très plastiques)	78	0,747	0,074	12	0	23	4	2,312

Tableau 3. Paramètres de comportement

Le tableau ci-après résume les résultats de l'essai de scissomètre sur chantier

	.0011101	
Classification GTR des échant	illons	SCISSOMETRE C _{uu} (K T/m²)
A ₂ (Sables fins argileux)		
	A ₂ h	12,8
	A ₂ s	15,6
A ₃ (Argiles)		
	A₃h	11
	A₃th	13,2
A ₄ (Argiles très plastiques)		18

Tableau 4. Essai de scissomètre sur chantier

2.2. Résultats de l'analyse géochimique des sols

La teneur en pourcentage des éléments des oxydes majeurs dans les sols latéritiques d'Ambatovy est donnée par le tableau 5 ci-après

Tableau 5. Analyse géochimique des éléments des oxydes majeurs

Teneur (en%)								
Classification GTR des échantillons	SiO ₂	Fe ₂ O ₃	MgO	AI_2O_3	Cr ₂ O ₃	TiO ₂		
A ₂ (Sables fins argileux)								
A ₂ h	29,7	28	0,43	24,2	0,4	4,1		
A ₂ s	26,7	43	9,8	4,5	3,3	0,4		
A ₃ (Argiles)								
A ₃ h	27,8	28,6	0,2	24,4	0,4	4,8		
A ₃ th	6	73,2	0,8	1,5	4,3	0,4		
A ₄ (Argiles très plastiques)	58,4	17,6	17	0,7	0,8	0,1		

2. 3 Résultats de l'Analyse en Composante Principale

2.3.1 Extrait de la matrice de corrélation Pearson

	PARAMETRES DE NATURE						ARAMETR	ES D'ET	AT
Elements en oxydes majeurs	Passant à 80 µm	W(%)	WL (%)	WP (%)	IP (%)	γ (kN/m3)	γ _d (kN/m3)	Sr (%)	γ _s (kN/m3)
SiO ₂	0,367	0,345	0,452	0,622	0,290	-0,163	-0,672	0,494	-0,258
Fe ₂ O ₃	-0,040	0,004	-0,120	-0,374	0,091	0,139	0,398	-0,230	0,038
MgO	0,487	0,485	0,505	0,507	0,474	0,093	-0,535	0,692	-0,363
Al ₂ O ₃	-0,537	-0,576	-0,504	-0,296	-0,641	-0,136	0,310	-0,516	0,360
Cr ₂ O ₃	0,031	0,071	-0,068	-0,342	0,155	0,294	0,357	0,020	-0,082
TiO ₂	-0,432	-0,473	-0,407	-0,207	-0,545	-0,101	0,285	-0,450	0,442

Tableau 6. Extrait de la Matrice de corrélation Pearson

Tableau 7. Paramètres de comportement

	C	edomètre	è	Triaxial UU		Cisaillement direct			Scissomètre
Elements en oxydes majeurs	σ'c (kPa)	Сс	Cg	Cuu (kPa)	φuu (°)	Cuu (kPa)	φuu (°)	ео	Cuu (kPa)
SiO2	0,811	0,866	0,883	-0,177	-0,634	0,438	-0,378	0,354	0,038
Fe2O3	-0,626	-0,523	-0,649	-0,075	0,434	-0,592	0,133	0,013	0,405
MgO	0,882	0,916	0,740	-0,577	-0,810	-0,145	-0,340	0,422	0,628
AI2O3	-0,338	-0,538	-0,266	0,610	0,425	0,554	0,311	-0,547	-0,966
Cr2O3	-0,250	-0,255	-0,476	-0,368	0,083	-0,826	0,113	0,019	0,700
TiO2	-0,413	-0,526	-0,287	0,567	0,414	0,575	0,341	-0,477	-0,943

2.3.1 Résultats des variables

l ableau /	. Valeurs	s propres	6	
	F1	F2	F3	F4
Valeur propre	11,396	6,508	3,898	3,198
Variabilité (%)	45,584	26,030	15,594	12,791
% cumulé	45,584	71,615	87,209	100,000

Deux (2) axes sont retenus pour l'interprétation des résultats : le premier axe F1 qui représente 45,58% de l'inertie totale et l'axe F2 retient 26,03% de l'inertie. Les deux (2) axes conduisent à un taux d'inertie expliquée à 71,61%.

	F1	F2
Passant à 80	0,824	-0,283
W%	0,831	-0,272
WL (%)	0,870	-0,099
WP (%)	0,867	0,121
IP (%)	0,824	-0,270
g(kN/m3)	-0,072	-0,793
gd (kN/m3)	-0,803	-0,501
Sr (%)	0,745	-0,488
gs (kN/m3)	-0,258	-0,439
σ'c (KPa)	0,572	0,183
Сс	0,971	0,136
Cq	0,795	0,555

Tableau 8. Coordonnées des variables

		1
	F1	F2
Cuu (KPa) triaxial	-0,479	0,790
φuu (°) triaxial	-0,648	0,375
Cuu (KPa) cisaillement	0,155	0,897
<pre></pre>	-0,475	-0,566
Eo	0,798	0,096
Cuu scissomètre	0,578	-0,740
SiO2	0,747	0,455
Fe2O3	-0,363	-0,642
MgO	0,853	-0,088
AI2O3	-0,622	0,575
Cr2O3	-0,132	-0,794
TiO2	-0,583	0,534

	F1	F2
Passant à 80	5,964	1,235
W%	6,059	1,134
WL (%)	6,647	0,152
WP (%)	6,594	0,223
IP (%)	5,954	1,123
g(kN/m3)	0,045	9,654
gd (kN/m3)	5,662	3,853
Sr (%)	4,871	3,661
gs (kN/m3)	0,586	2,968
σ'c (KPa)	2,874	0,513
Сс	8,280	0,283
Cg	5,541	4,737

Tableau	ı 9. Contrik	oution d	es variables	
F1	F2			F1
5,964	1,235		Cuu (kPa)	2,014

	F1	F2
Cuu (kPa)	2,014	9,587
φuu (°)	3,686	2,160
Cuu (kPa)	0,210	12,356
φuu (°)	1,977	4,915
Eo	5,594	0,141
Cuu	2,928	8,412
SiO2	4,894	3,175
Fe2O3	1,154	6,337
MgO	6,385	0,120
Al2O3	3,397	5,085
Cr2O3	0,154	9,699
TiO2	2,980	4,390

Figure 1 : Cercle de corrélation des variables

2.3.2 Résultats des individus

Tableau 10 : Coordonnées des individus

Individus	F1	F2	F3	F4
A2h	-1,268	-2,772	-1,289	2,684
A2s	-3,092	4,250	0,774	0,861
A3h	-1,532	-0,322	-2,579	-2,574
A3th	-0,668	-2,313	3,249	-1,175
A4	6,559	1,157	-0,155	0,204

Figure 2 : Répartition des individus suivant les axes F1 et F2

Tableau 11 : Contributions des individus (%)				us (%)
	F1	F2	F3	F4
A2h	2,821	23,621	8,519	45,039
A2s	16,777	55,510	3,077	4,636
A3h	4,116	0,318	34,130	41,436
A3th	0,783	16,438	54,150	8,629
A4	75,503	4,113	0,124	0,260

axes F1 et F2

2.3.3 Interprétation des résultats

Axe F1

Variables

Pour repérer les contributions significatives des variables à la formation de l'axe F1, on compare les valeurs des coordonnées du premier axe factoriel à la racine carrée de la

contribution moyenne $\sqrt{25}$ soit 20%. Et compte tenu de la qualité de représentation ainsi que la contribution des variables, on obtient

Tableau 12 : Contribution des variables significatives à la formation de l'axe F1

L'axe F1 oppose la densité sèche aux paramètres de compressibilité et la teneur en SiO₂ et MgO.

• Individus

Pour repérer les contributions significatives des individus à la formation de l'axe F1, on compare leurs coordonnées à la racine carrée de la première valeur propre. Le tableau suivant résume la contribution des individus

Tableau 12 : Contribution des individus significatifs à la formation de l'axe F1

-	+
A2s	A4

L'axe F1 met en opposition les individus sables fins argileux peu plastiques (A2s) et argiles très plastiques (A4).

Suivant les contributions des variables et des individus à la formation de l'axe F1, cet axe met donc l'opposition qui existe entre sables fins argileux peu plastiques (A2s) et les argiles très plastiques (A4) dans leur compressibilité et teneur en SiO₂ et MgO.

• <u>Relation entre la compressibilité de deux (2) types de sols latértiques</u> <u>nickelifères d'Ambatovy et la teneur en SiO2 et MgO</u>

La variation croissante de la teneur en SiO₂ et MgO dans ces deux (2) types de sols correspond à l'augmentation de leur compressibilité. De l'extrait de la matrice de

corrélation de Pearson, la MgO ainsi que la SiO₂ ont une corrélation positive très forte (0,916 et 0,866) avec l'indice de compression Cc.

En se référant au profil d'altération latéritique des sols d'Ambatovy, les sols A2s se situent au sommet du profil tandis que A4 se trouvent à la base. Les Mg et Si sont les premiers éléments les plus lessivés et plus mobiles dans l'altération de la roche mère. D'où la teneur décroit depuis la base du profil d'altération jusqu'au sommet. Plus particulièrement, la teneur en Mg décroît lentement de la roche-mère à la saprolite grossière et devient brutalement très faible dès la base de la saprolite fine. Ce comportement de Mg est caractéristique de la plupart des manteaux d'altération des péridotites en zones chaudes (Mandimbiharison A.J., 2012).

La compressibilité de ces deux (2) types de sols est liée au type d'argiles qui les constituent. En vérifiant la relation de Skempton,

 $Cc = 0,009 (w_L - 10)$

Pour les sols A2s, $w_L = 53,1\%$ on obtient Cc = 0,388

Lors de l'essai Cc =0,340

Pour les sols A4, $w_L = 81,6\%$ on obtient Cc=0,644

Lors de l'essai Cc = 0,747

Ces deux (2) types de sols satisfont à peu près la relation de Skempton.

Selon l'indice de compression, les sols A2s sont classés Illites (0,30 < Cc < 0,50) qui sont des sols très compressibles. Les sols A4 sont de Montomorillonites (0,50 < Cc), sols extrêmement compressibles.

La forte valeur en Cc est en corrélation négative avec la densité sèche γ_d . Ceci explique la valeur de γd A2s (11,8 kN/m³) et γd A4 (9,6 kN/m³).

Axe F2

• Variables

Pour repérer les contributions significatives des variables à la formation de l'axe F2, on compare les valeurs des coordonnées du deuxième axe factoriel à la racine carrée de la contribution moyenne 20%. Et compte tenu de la qualité de représentation ainsi que la contribution des individus, On obtient

Tableau 13 : Contribution des variables significatives à la formation de l'axe F2

-	+
Cr_2O_3	C _{uu}

• Individus

Pour repérer les contributions significatives des individus à la formation de l'axe F2, on compare leurs coordonnées à la racine carrée de la deuxième valeur propre, on obtient

Tableau 13 : Contribution des variables significatives à la formation de l'axe F2

-	+
	A2h
	A2s

L'axe F2 explique un aspect très particulier des individus A2s et A2h.

Suivant les contributions des variables et des individus à la formation de l'axe F2, cet axe reflète la particularité de la cohésion des sols A2h et A2s et leur teneur en Cr_2O_3 .

Selon la classification GTR, ces deux (2) types de sols appartiennent à la même sous classe fonction de la nature A2 des sols fins A ; mais leur différence réside au classement selon l'état hydrique.

La teneur en Cr_2O_3 varie brusquement de 0,4% à 3,3% pourtant leurs horizons d'altération sont sous-jacentes. Les A2h se trouvent dans la cuirasse ferrugineuse au somment du profil d'altération latéritiques des sols d'Ambatovy ; et les A2s se situent dans l'horizon de latérites jaunes sous-jacentes.

De l'extrait de la matrice de corrélation de Pearson, on constate que la teneur en Cr_2O_3 et la cohésion apparente de ces sols sont négativement corrélées très forte (-0,826). Une augmentation de 2,9% en teneur de Cr_2O_3 enregistre une diminution de 22% de la valeur de cohésion.

On sait que la cohésion apparente des sols argileux est d'autant plus forte que la teneur en eau est faible. (Pilot et al., 1969).Pourtant, la matrice de corrélation de Pearson, on voit que la teneur en eau de ces deux (2) types de sols est corrélée très faible avec la teneur en Cr_2O_3 (0,071).

Conclusions

Les principales conclusions concernant l'influence des teneurs en oxydes majeurs sur les paramètres mécaniques des sols latéritiques nickelifères d'Ambatovy sont les suivantes ;

- La distribution de la teneur en Mg et Si dans les différents horizons d'altération de ces sols latéritiques affecte leur compressibilité. Les sables fins argileux (A2s) peu plastiques se trouvent au sommet du profil d'altération et sont très compressibles tandis que les argiles très plastiques (A4) se situent à la base du profil et sont extrêmement compressibles ;
- Même si les sols A2h et A2s se diffèrent de leur comportement hydrique, la variation de teneur en Cr₂O₃ pourrait aussi jouer un rôle prépondérant à leur comportement relatif à la cohésion ;
- La contradiction au niveau de la corrélation entre teneur en eau et teneur en Cr₂O₃ mérite d'être étudiée plus en détail.

4. Références bibliographiques

Boissé M. (2015). Site investigation waste dump Ambatovy et low grade stockpile et Analamay. *Rapport d'étude*

Magnan J., Baki A.A., Pichot P. (1993). Analyse statistique de la variabilité des propriétés physiques et mécaniques des sols. *Bulletin de liaison Labo P. et Ch. -186*

Mandimbiharison A.J (2012). Evolution minéralogique, distribution et comportement géochimique de certains éléments au sein du profil latéritique nickelifère d'Ambatovy, Centre est de Madagascar. *Thèse de Doctorat*

Moullou Y. (2008). Etude géotechnique, chimique et minéralogique de matière premières argileuses et latéritique de Burkina Faso améliorées aux liants hydrauliques : application en génie civil (bâtiment et route). *Thèse de Doctorat*

Pilot G., Amar S., Le Roux A. (1969). Relation entre la composition minéralogique et les caractéristiques mécaniques de quelques sols argileux français. *Colloque de Géotechnique à Toulouse.*

Skempton (1944). Notes of the compressibility of clas *Quart – J. Géol.Soc.London -100, 119-135,*